Characterizing Se and Hg Exposure in the Colorado River Food Web in Grand Canyon

Dave Walters

(US EPA, ORD, National Exposure Research Laboratory)

and

GCMRC Foodbase Research Team

Background

- Selenium is an essential nutrient
- Narrow range between beneficial and detrimental
- Selenium is present in coal and fuel oil, many soils types, and some mineral deposits
- Enters aquatic ecosystems through natural and anthropogenic processes
- Elevated levels of Se in waters can occur:
 - Naturally in areas with Se-rich soils
 - Due to irrigation practices
 - During mining and smelting of ores rich in Se
 - During combustion of coal or fuel oil

Background

- Selenium and Mercury biomagnify in aquatic food webs
- Toxicity to fishes and wildlife well established
 - High levels of Se in fishes can cause:
 - Deformities
 - Reduced growth or reproductive output
 - Extirpation of species

Background

Se and Hg in fishes exceed toxicity thresholds throughout CR basin

Hinck and others 2007

Hinck and others 2007

 Comprehensive 'exposure characterization' in Grand Canyon is a logical next step

Research

- Objectives:
 - Quantify extent of contamination
 - Develop Se and Hg budgets
 - Export of Se and Hg to Riparian Ecosystems
- Plan:
 - Samples will be collected on June 2008 food base river trip
 - US EPA will fund Se and Hg analysis (~\$40k)

Quantify Extent of Contamination

- Se and Hg concentrations of all trophic levels will be determined at 6 sites (Lees Ferry, RM30, RM62, RM125, RM 165, RM225)
- Compare Se and Hg concentrations of inverts and fishes with toxicity thresholds to determine next steps:
 - additional research
 - formal risk assessment
 - no further action
- Toxicity thresholds already determined for many taxa present in the CRE

Se and Hg Budget

 Link Se and Hg data with quantitative food web to identify Se and Hg flux across trophic levels

This will yield a quantitative food web with units of Se and Hg. Can identify how much Se and Hg are in each species/taxa and how it got there.

Export of Se and Hg to Riparian Ecosystem

- Estimate numbers of emergent insects from secondary production of aquatic life stages
- Combine this with Se and Hg data to assess risk to terrestrial insectivores (i.e., birds and herps)

Emergent insects are a major route of material transport across aquaticterrestrial boundary

From: Baxter and others,

Freshwater Biology 50(2) 2005

Conclusions

- Se and Hg in fishes exceed toxicity thresholds throughout the Colorado River Basin
- The exposure characterization we have planned for the Grand Canyon represents a logical next step
- US EPA is providing the funding

